“They Actually Liked My Quizzes!” Getting buy-in for evidence-based learning methods
Posted March 1, 2017
By Jessica LaPaglia
Each semester I attempt to overhaul a single course based on my assessment of the previous semester. In fall 2014, that class was Learning and Memory. As a memory researcher, I know that frequent testing is a powerful memory enhancer (1), so I incorporated daily quizzes. I also wanted to engage students in psychology research, so students designed their own memory experiments. I saw huge gains in student learning from the beginning of the semester to the end and assumed that students loved the course as much as I did. (Because why wouldn’t they?) On that dreaded day when course evaluations are released and faculty are crying over that one negative comment, I was eager for confirmation that my hard work paid off… only to be completely blind-sided by the amount of negative reviews from students.
One comment read, very simply, “I did not like the quizzes or the paper we had to write.”
“But it was for your own good!” I yelled at the computer screen.
While there was satisfaction in seeing gains in student learning, it was completely overshadowed by their distaste for the course. Consumed by the need to be liked (a feeling that plagues most junior faculty), I concluded that another overhaul of the course was necessary. Inspired by a Psychonomics talk by Dr. Steven Luck on “Using Cognitive Psychology to Improve the Teaching of Cognitive Psychology,” I decided to give students more of what they seemed to hate. After careful research and reflection, I incorporated even more empirically supported techniques into my course, but did so in a way that would garner student buy-in. The six learning techniques described below became the essence of my new and improved Learning and Memory course.
Learning and Memory Revised
Six learning-enhancing techniques were used to improve student learning:
1. Daily Low-Stakes Quizzes. Testing/quizzing is a very powerful memory enhancer (when compared to re-study (1)). There were pop-quizzes at the end of most class periods. These quizzes were a small proportion of their final grade and covered the material presented that day. Students were allowed to use hand-written notes to look up answers, but were encouraged to attempt to retrieve the answer from memory before looking it up.
2. Hand-Written Notes. Hand-writing (as opposed to typing) notes leads to a better understanding of the material (2). Although students were free to type their notes, only hand-written notes could be used on the quizzes.
3. Self-Correcting Exams. Students took the multiple-choice portion of each exam once in class and again at home (with notes) for a chance to improve their score. The average score (from both attempts) was used to calculate the final exam grade. This self-correcting method improves learning because students need to spend more time on the material and they are challenged to find the correct answer on their own (3). Furthermore, research indicates that errors made in high confidence will lead to better learning of the correct answer— a phenomenon called hypercorrection (4). The self-correcting method ensures that students will take a careful second look at their exams.
4. Distributed Practice. At the beginning of each class period, I asked students questions about key concepts from the class period before. Distributed practice helps connect the material and improves retention of information (5).
5. Elaborative Processing. Relating the information learned in class and from the text to one’s own life can improve learning (6). Reflections, in-class activities, experiments, and the group research project reinforced this type of deeper understanding.
6. Collaborative Review Sessions. Students answered practice test questions first on their own, then with a partner, followed by corrective feedback from the instructor. Incorporating both testing and elaborative processing during review sessions increases student understanding of the material by providing an initial retrieval opportunity followed by immediate feedback from peers (7).
These learning-enhancing methods became the theme of the course. Students developed their own experiments related to improving memory, created flyers about study methods and posted them around campus before finals week, and reflected on the process of learning in these ways at several points in the semester. Reflection was guided by the use of prompts that encouraged students to apply the learning-enhancing methods to their studying for the course and their learning in other courses.
Cultivating Student Buy-in
One of the biggest challenges in any course re-design is getting students to buy into the process. On day one of the semester I talked about the six learning-enhancing techniques and how they would be used in this course. I included this information (citations and all) in the syllabus and quizzed them on it.
In the past I had used some of the learning-enhancing techniques, but I never explained why I used them. I foolishly assumed that students would make the connection between the testing effect that we discussed in class and the fact that they took a quiz each day. This time was different. I let the students see behind the curtain.
Although it is a great start, telling students why we do what we do is not enough to get buy-in. Throughout the semester, students read the original research behind these learning-enhancing techniques and reflected on their application to learning in this course and beyond.
Reflection is also a great way to get feedback. The general consensus from my students was that these methods were beneficial to their learning. In their reflections, they even developed interesting ways to incorporate other learning-enhancing techniques into the course such as interleaving (8) and dual-coding (9).
The Results
It was course evaluation day. Again. After the last time I was cautiously optimistic. I opened the link to find that I had done it. Not only did I see student learning increase throughout the semester, but their ratings of the course increased significantly as well. They had learned something and enjoyed learning it! When asked what helped their learning, nearly every student comment mentioned the learning-enhancing techniques—especially the daily quizzes. Yes, they liked the daily quizzes because now they could see the value in it.
Applying These Methods to Other Courses
This course design can easily be applied to any cognitive-related course. Applying these techniques in other courses could also be done, but on a smaller scale. Let your students in on why they take quizzes every day in your class, why they are required to take hand-written notes, or why they are engaging in research in a psychology class. At midterm and the end of the semester, have students reflect on their learning and how the daily quizzes, review sessions, and projects they completed helped them understand the material. By implementing some of these techniques and learning reflections, you may improve student learning and be pleasantly surprised when examining those pesky end-of-semester course evaluations.
Bio
Jessica LaPaglia is an Assistant Professor of Psychology at Morningside College in Sioux City, IA, where she lives with her husband and daughter. She received her B.A. in psychology from Augsburg College (Minneapolis, MN) and M.S. and Ph.D. in psychology from Iowa State University (Ames, IA). She teaches a variety of courses including cognitive psychology, brain and behavior, and research methods.
Special Thanks: To Jason Chan for helping me discover the awesomeness that is the testing effect.
References
(1) Karpicke, J. D., & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 19, 966–968.
(2) Mueller, P. A., & Oppenheimer, D. M. (2014). The pen is mightier than the keyboard: Advantages of longhand over laptop note taking. Psychological Science, 25, 1159-1168.
(3) Gruhn, D., & Cheng, Y. (2014). A self-correcting approach to multiple choice exams improves students’ learning. Teaching of Psychology, 41, 335-339.
(4) Metcalfe, J., & Finn, B. (2011). People’s hypercorrection of high-confidence errors: Did they know it all along? Journal of Experimental Psychology: Learning , Memory, and Cognition, 37, 437-448.
(5) Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354-380.
(6) Craik, F. I. M., & Tulving E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268-294.
(7) Maxwell, E. J., McDonnell, L., & Wieman, C. E. (2015). An improved design for in-class review. Journal of College Science Teaching, 44, 48-52.
(8) Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: Is spacing the “enemy of induction”?Psychological Science, 19,585–592.
(9) Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? Cognitive Psychology, 5, 176-206.